Guest post by Josh Grochow and Youming Qiao
There has, quietly, been somewhat of a breakthrough in isomorphism testing. No, not as big as Babai's 2016 Graph Isomorphism in Quasipolynomial Time. But a first foothold in climbing a wall for which no one had gotten much off the ground before. The result, due to Xiaorui Sun in this year's STOC, is an algorithm for testing isomorphism of a certain class of groups - p-groups of class 2 and exponent p if you must know, but we'll get to that - in time
In the 1970s, when Graph Isomorphism was still a mystery, people also thought more widely about isomorphism testing of other combinatorial and algebraic structures. For finite groups of order n, Robert Tarjan realized that there is an
Not only is this question natural from the perspective of studying groups computationally, it is also natural from the perspective of Graph Isomorphism. For Group Isomorphism reduces to Graph Isomorphism in polynomial-time (as does the isomorphism problem for any finite algebraic or relational structure, see Zemlyachenko, Korneenko, & Tyshkevich). While this has been known for a long time, Babai’s result on Graph Isomorphism brings the running times quite close:
Since the general Group Isomorphism problem seems difficult, attention turned to special classes of groups. It was not hard to see that isomorphism of Abelian groups could be computed in polynomial time. However, a group class that is just “one step away” from Abelian - groups G where, when you mod out by the center Z(G), what’s left is Abelian - turned out to be difficult. Such groups are called class-2 nilpotent, and in one sense, their group-theoretic structure is relatively straightforward: both G/Z(G) and Z(G) are Abelian. Yet, to devise an efficient isomorphism testing procedure turned out to be extremely difficult (see e.g. Garzon-Zalcstein, Rosenbaum-Wagner, O’Brien, Wilson), to the point that this is usually considered as a bottleneck for putting Group Isomorphism in P.
Among class-2 nilpotent groups, the “key case” to resolve is widely believed, for several reasons, to be p-groups of class 2 and exponent p. In such groups, both the center Z(G) and quotient G/Z(G) are elementary abelian, i.e., of the form
Xiaorui Sun’s result represents the first substantial improvement, cracking open this decades-old quest. His algorithm runs in time
Baer’s Correspondence sets up an equivalence of categories between p-groups of class 2 and exponent p, and skew-symmetric bilinear maps over
All this results in an algorithm which solves the above problem on bilinear maps in time
For us, who have been working on Group Isomorphism for more than a decade, Xiaorui’s result represents an exciting development on this classic algorithmic problem, and we look forward to seeing more progress in this direction in the near future.
1Rosenbaum & Wagner improved the exponent to
No comments:
Post a Comment