David Marcus was a Math major a year ahead of me at SUNY Stony brook (he graduated in 1979,

I graduated in 1980). He then got a PhD from MIT in Math, and is a reader of this blog. Recently he emailed me that he thinks the current Nobel Prize Winners in Physics do not understand their own work. Is it true? Let's find out!

------------------------

(Guest blog from David Marcus)

2022 Nobel Prize in Physics Awarded for Experiments that Demonstrate Nonlocality

The 2022 Nobel Prize in Physics was recently awarded to experimenters who demonstrated that the world is nonlocal. The curious thing is that neither the writers of the Nobel Prize press release nor the recipients seem to understand that this is what they demonstrated.

For example, the press release (see here) says: "John Clauser developed John Bell's ideas, leading to a practical experiment. When he took the measurements, they supported quantum mechanics by clearly violating a Bell inequality. This means that quantum mechanics cannot be replaced by a theory that uses hidden variables." That is not what the experiments mean, and the statement is false.

The word "locality" means that doing something here cannot instantly change something other there.

The experimental setup is the following: You prepare two particles, A and B, and send them in opposite directions so that they are far apart. You and your colleague do experiments on each particle at the same time. If you and your colleague perform the same experiment, then, from your experiment on A, you can predict with certainty the result of your colleague's experiment on B (and vice versa).

In a paper in 1935, Einstein, Podolsky, and Rosen pointed out that, assuming locality, the experimental results at A and B must be determined by the source that prepared the particles. They didn't actually say, "assuming locality", but they implicitly assumed it. (If you disagree with them, please offer an alternative.)

In 1964, John Bell published his paper. In it, he considered three of the experiments that could be done on the particles A and B. Assuming the results are determined by the source (which follows from Einstein, Podolsky, and Rosen's argument), he derived an inequality on the correlations between the results of the three experiments on the two particles. The math is simple; for details, see here.

The Nobel Prize winners did experiments, and their results violated Bell's inequality (or similar inequalities). Hence, the world is nonlocal.

The simplest theory that agrees with experiment is Bohmian Mechanics. This is a deterministic theory of particles whose motion is governed by a wave (the wave function being the solution of the Schrödinger equation). Of course, Bohmian Mechanics is nonlocal, as is the world.