Wednesday, May 09, 2018

Second of N posts on G4G13. Maybe

(Don't forget to vote for SIGACT posistions:here  9th workshop on Flexible network design, May 22-25 at College Park, here.)

My first poston G4G13 is arguably here. To see why its debatable, see that post.


In a Foxtrot cartoon (see here) Foxtrot has a glass which looks like it is half-full (or half-empty)
and asks people if its half-full or half empty. But the jokes on them!
The class is slightly angled so its actually 5/12 full (or 7/12 empty)
Given the area of the top and bottom What is the angle?
Generalize to other dimensions.

HEX PRIMES by Spandan Bandyopadhyay

Here is an alternative definition of primes that
lends itself to a generalization.

A number x is PRIME if when there is a rectangle with
integer sides and area x, one of the sides is 1.

Lets generalize this!

A number x is TRIPRIME if when there is a triangle with
integer sides of area x, one of the sides is 1.

Rather than use these prefixes we will go with

A number x is n-PRIME if when there is a convex n-gon with
integer sides and area x, one of the sides is 1.

HEXPRIMES are of course 6-primes.

The problem with 5-minute talks (maybe it should have been 6 minutes)
is that the concept is intersting but I didn't get to hear much
about them. And I could not find a paper on line. Note that this
conference has many non-academics for whome PAPERS are not the
basic currency so things are more informal. This is GOOD in that
its more of a free-for-all, but bad for follow up.
ALL of G4G12's are on You-Tube, so when that happens for G4G13,
I can follow up on this.

One thing I did manage to write down- 7 is the first HEX-composite.

No comments:

Post a Comment