Wednesday, February 19, 2025

Tomorrow and Yesterday

I recently completed Tomorrow, and Tomorrow, and Tomorrow by Gabrielle Zevin, a book recommended by many including the City of Chicago. The novel covers the decades long journey of two game developers, Sadie and Sam, and how their lives interact with the games they create.

A paragraph towards the end made me rethink the whole book (not a spoiler):

Well, if we’d been born a little bit earlier, we wouldn’t have been able to make our games so easily. Access to computers would have been harder. We would have been part of the generation who was putting floppy disks in Ziploc bags and driving the games to stores. And if we’d been born a little bit later, there would have been even greater access to the internet and certain tools, but honestly, the games got so much more complicated; the industry got so professional. We couldn’t have done as much as we did on our own.

This paragraph hearkens back to my post last week, about how the era you grew up in can affect your trajectory. But also I'm a generation older than the book's main characters, and indeed Ribbit was distributed on a floppy disk in a Ziploc bag.

The novel at its heart is about two friends making games. I was lucky to have that experience myself for a couple of years in the early 80s, with high school friend Chris Eisnaugle, working on Ribbit, Excalibur and some other games that never saw the light of day. We coded for days on end while listening to music like REO Speedwagon, and taking time off for bowling or watching early Schwarzenegger movies. Coding in assembly language on slow processors with limited graphics, taking advantage of our complementary strengths and making it work. I don't regret leaving that life behind for the theoretical wonders of computational complexity, but that doesn't mean I don't miss it.

Sunday, February 16, 2025

Big Breakthrough in the exciting world of sum-free sets!

 Let \([n]\) be the set \(\{1,\ldots,n\}\). (This is standard.)

Let X be a set of integers. \(X\) is sum-free if there is NO  \(x,y,z\in X\) such that \(x+y=z\). (Note that \(x=y\) is allowed.)

Lets try to find a large sum-free set of \([n]\). One obvious candidate is 

\(\{1,3^1, 3^2,\ldots,3^{\log_3 n} \}\) (assume \(n\) is a power of 3). 

So we can get a \(\log_3 n\) sized sum free set of \([n]\). Can we do better?

YES: 

Erdos showed that every set of \(n\) reals has a sum-free subset of size \(n/3\). I have a slightly weaker version of that on slides here.

That result lead to many questions:

a) Find \(f(n)\) that goes to infinity  such that every set of \(n\) reals has a sum-free subset of size \( n/3 + f(n)\).  

b) Replace reals with other sets closed under addition: naturals, integers, some groups of interest.

c) Just care about \([n]\).

Tao and Vu had a survey in 2016 of sum-free results, see here.

We mention three results from their survey

(0) Eberhard, Green, and Manners showed that the 1/3 cannot be improved (see the survey for a more formal statement of this). So, for example, nobody will ever be able to replace 1/3 with 1/2.9.

(1) Alon and Kleitman  modified the prob argument of Erdos (in the slides) and were able to replace \( n/3\) with   \( (n+1)/3\).

(2) Bourgain showed, with a sophisticated argument,that \(n/3\) could be replaced by \((n+2)/3\)

I believe that result (2) was the best until a recent paper of Ben Bedert (see here). Did he manage to 

push it to \((n+100)/3\)? No. He did much better:

For every set of \(n\) reals there is a sum-free  subset of size \(n/3 + c\log\log n\).

Reflections

1) This is a real improvement!

2) Will it stay at \(n/3 + c\log\log n\) or will there NOW be an avalanche of results?

3) Contrast: 

Erdos's proof  I can (and have) taught to my High School Ramsey Gang (note: you DO NOT want to mess with them).

 The proof by Ben Bedert is 36 pages of dense math.

4) This leads to the obvious open question: Is there an elementary proof of some bound of the form \(n/3 + f(n)\) where \(f(n)\) goes to infinity. 



Wednesday, February 12, 2025

Research Then and Now

A student asked me if complexity research was easier when I was a student. Interesting question. Let's compare research now versus the late 80's.

The big advantage today is technology. Just a small sampling below.

Information: Google, Wikipedia, Complexity Zoo and the ever more powerful AI systems

Online Papers: arXiv, digital libraries, individual's web sites

Collaboration: Zoom, Overleaf, Theory Stack Exchange

Communication: Social Media, Online Talks and Classes, YouTube, Mobile Phones

Back in the 80's we had LaTeX and email. LaTeX was slow and you had to print out the paper to see it. Email was only text and it was difficult to share papers electronically. You had to go to the library to read papers unless you had the paper proceedings nearby. It was often easier to reprove a theorem then go find the proof.

We did have some advantages back then. Reproving a theorem made you understand it better. Reading a paper in a proceedings or journal often introduced you to other papers in the publication. We didn't have the distractions of social media and the Internet in general so you could actually focus on research. (Though there was a Mac in the MIT student area that ran Tetris)

People came to the office every day. That opened up collaborations formal and informal. I could walk into an office and ask questions to Johan Håstad, Noam Nisan, Paul Beame and Michael Kearns, all postdocs at MIT, not to mention my fellow grad students or the professors. There was a huge advantage being at a place like MIT or Berkeley, better that those advantages have been mitigated somewhat since.

But the biggest advantage of all, and I'm not afraid to admit it, low hanging fruit. Computational complexity was just 20 years old when I started grad school, and the P v NP problem a young teenager. There was surprising theorem after surprising theorem through the early 90's and not so much since. You didn't need to know deep math and most graduate students could follow nearly all of the 47 talks at my first conference (STOC 1986), not likely in the 219 STOC 2025 papers

Much of my best work was done by reading a paper or watching a talk and wondering why the authors didn't ask some question, and then asking it and sometimes solving it myself or with others. Now you need to spend time climbing the trees and going down deep branches to find new problems that only people on nearby branches would care about or even understand.

But who knows, AI may soon climb those branches for you.

Sunday, February 09, 2025

Does Lance dislike Ramsey Theory Because he's colorblind?

BILL: Lance, my wife asked if you dislike Ramsey Theory because you are colorblind.

LANCE: (laughs) It's why I don't like Ramsey Theory talks--impossible for me to follow. But I don't actually dislike Ramsey theory. I just don't like it as much as you do.

BILL: Nobody does, except possibly Graham, Rothchild,  Spencer, and your average Hungarian first grader.

LANCE: To me Ramsey Theory had one useful cool idea: The Probabilistic Method, that made people actually think Ramsey Theory was far more interesting than it really is.

BILL: Um, that is bad history and bad mathematics.

LANCE: I learned Ramsey Theory from Spencer and his book entitled Ten Lectures on the Probabilistic Method. But the Probabilistic Method was far more interesting than the Ramsey Theory. I suspect this is common: learn Ramsey Theory because of the Probabilistic Method. And some people get suckered into thinking that Ramsey Theory is interesting or important or both. My favorite application of the Probabilistic Method has nothing to do with Ramsey theory: Lautemann's proof that \(BPP \subseteq \Sigma_2\).

BILL:  A few points to make here

a) Some people call the Prob Method an application of  Ramsey Theory. I do not. The Prob Method was developed by Erdos to get lower bounds on asymptotic Ramsey numbers and was then used for many other things, that you and others find far more interesting. That's great, but that's not really an application of Ramsey Theory.

b) If the prob method was not discovered by Erdos for Ramsey Theory, would it have been discovered later when it was needed for something you care about more? Probably. But it may have been much later.

c) Ramsey Theory has real applications. I have a website of them here. And there are more. For example---

LANCE: Bill, your graduate course in Ramsey theory is titled Ramsey Theory and its ``Applications''. So you do not believe there are real applications.

BILL: Depends how you define real and applications. I put it in quotes since many of the applications are to pure math. Some are to lower bounds in models of computation, but some may still consider that to not be a real application. Rather than debate with the students what a real application is, I put it in quotes.

LANCE: Are there any real applications? That is, applications that are not to pure math, and not to lower bounds.

BILL: I would think you would count lower bounds to be a real application. 

LANCE: I am asking on behalf of the unfortunate Programming Language Student who takes your class thinking there will be real applications- perhaps they missed the quotes around applications.

BILL: I know of one real application. And its to Programming Languages! Ramsey Theory has been used  to prove programs terminate. I wrote a survey of that line of research  here.

LANCE: One? There is only One real application? Besides the application of learning the probabilistic method so they can use the method for more interesting problems. Or to save the earth from aliens.

BILL: Judging a field of Pure Math by how many applications it has does not really make sense. I find the questions and answers themselves interesting. Here is a list of theorems in Ramsey Theory that I find interesting. Do you? (This might not be a fair question either since many theorems are interesting because of their proofs.) 

a) (Ramsey's Theorem, Infinite Case) For every 2-coloring of \(K_\omega\) there exists \(H\subseteq N\) such that \(H\) is infinite and every edge between vertices in \(H\) is the same color. My slides here

b) (Van Der Warden's Theorem) For every \(c,k\) there exists W such that for all c-coloring of  \(\{1,\ldots,W\} \) there exists \(a,d\), both \(\ge 1  \) such that

\(a, a+d, \ldots, a+(k-1)d\) are all the same color.  My slides here.

c) (Subcase of Poly VDW Thm) For every \(c\) there exists W such that for all c-colorings of \(\{1,\ldots,W)\} there exists \(a,d\), both  \(\ge 1\) such that 

\(a, a+d, a+d^2,\ldots,a+d^{100}\) are the same color. My slides here.

d) For all finite colorings of the Eucidean plane there exists three points, the same color, such that the area of the triangle formed is 1. My slides: here.

So Lance, do these Theorems interest you?

LANCE: Sorry I fell asleep after you said "Ramsey". Let me look. Your slides are terrible. All of the colors are the same!

BILL: Maybe my wife was right.